
© 2018 Levvel.io | www.levvel.io | hello@levvel.io

by Ian Duckworth

Ensure Long-term Code Quality and Prevent
Future Issues with Unit Testing

hello@levvel.io
980.278.3065 © 2018 LEVVEL.IO ALL RIGHTS RESERVED 2

Intro

“We can’t make the change you’re looking for; it’s too risky.” “If you change code
there, who knows what the impact will be?” “The software is just too fragile
to address any tech debt right now.” If you have heard these statements (or
something similar), you have no doubt been frustrated by poorly-written software.
Having poorly-written software doesn’t necessarily mean that the developers
who wrote the software are bad or incompetent; it often simply means that over
time, if care isn’t taken to perpetually ensure quality, standards tend to slip as
new patterns become both available and viable.

This slippage can then have a cumulative effect in which production bugs spook
managers and users alike as the software gets more and more locked down.
What you eventually get is an unmaintainable product that nobody is happy with.
This is obviously a bad situation to be in, but one that can be avoided.

There is no silver bullet to make software function perfectly, especially software
that has gotten into such a poorly-performing state. However, there is hope.
Significantly decreasing testing cycle times and adding in new testing cycles to
give better and faster feedback to developers can greatly reduce the fragility
of an application and decrease time to market for new features. A first step in
accomplishing this goal is by implementing a unit test suite for the application.

What is Unit Testing?

Unit testing is the concept of writing code to test code. Every time a method
is created, the implication is that at least one other method or dependency is
relying on that method to do exactly what it was written to do. If that method
is changed, how can one be sure that all of its dependencies still function as
intended? Unit testing solves this conundrum by programmatically testing all the
supported flows through the method.

Since the tests are programmatic, they run quickly (when compared to tests
that hit a database and call out to external dependencies) and provide prompt
feedback regarding whether or not a change broke a supported flow through a
method. This creates a much less fragile application that can be refactored and
maintained as business requirements change and better ways of doing things
are discovered.

hello@levvel.io
980.278.3065 © 2018 LEVVEL.IO ALL RIGHTS RESERVED 3

Since developers get near-immediate feedback on whether or not a change is
causing breaks, the back and forth that can occur between developers and QA in
the absence of unit tests is reduced. Additionally, unit tests are part of the code
base of their applications, which means that developers can run the tests before
checking code in, decreasing the burden on functional and end-to-end testing.
Simply put, at a high level, having a highly-functioning unit test suite helps
software gain and/or keep a competitive advantage.

Precursors for Unit Testing

Unfortunately, getting a code base into a state where it can be unit tested
can take some preparation, especially if the code base is older and has been
touched by numerous developers and/or teams. Here is what needs to happen
to get a code base into a state where unit tests can be effectively written:

Dependency Injection

Dependency injection has two primary advantages. The first is that it creates a
more functional code base because it forces all dependencies to be declared
upfront since they will be injected directly into the constructor. This ensures that
any developer looking at the class constructor can easily tell which other classes
it relies on for the work it is going to perform. The second advantage is mocking
(which will be discussed later in this document).

Composition Over Inheritance

This point directly aligns with dependency injection; it is the principle that
inheritance should only be done in few select cases. For the vast majority
of dependencies, each should be an independent class with an associated
interface that is registered with a dependency injection provider which then
injects into the constructor of a dependant service. This principle also has the
effect of making applications more functional. See this blog post for a more in-
depth explanation of this principle.

Single Responsibility Principle

Every method should do exactly one piece of work. What a “piece

https://medium.com/humans-create-software/composition-over-inheritance-cb6f88070205

hello@levvel.io
980.278.3065 © 2018 LEVVEL.IO ALL RIGHTS RESERVED 4

of work” means exactly is somewhat variable based on the business
need of the application. However, if an application has a method called
CallServiceAndUpdateDatabase(), it is likely that it is violating this principle since
the implication is that the method calls a service and then updates a database all
in one method.

This doesn’t mean that a method can’t have any decision logic, but be very wary
of nested decision logic and excessive looping within a method. To correct the
previous example, it would be best to have two methods called CallService()
and UpdateDatabase() with a method that handles calls to both methods and
manages the input and output.

Finally, going back to the previous points, each of these methods should
probably be encapsulated in its own service and injected. See this blog post for
more information on how the single responsibility principle should be applied.

Writing a Useful Unit Test

Many organizations strive for unit test related metrics such as 100% unit test
coverage or a certain percentage of tests passing. These are admirable goals,
but they are very misguided in practice and can produce more of a “checkbox”
mentality rather than providing tangible value.

This is because most methods in a code base have more than one possible
outcome, so 100% test coverage means that a large portion of the business logic
is left untested (since this metric would indicate to a developer that there is a 1:1
mapping of unit tests to methods, which is frequently not the case).

In addition, depending on how a project is structured, there are some methods
that might not need to be unit tested at all, such as methods that provide only a
wrapper for third-party functionality, or methods that only access the database
(which is discussed more in the next section).

Instead of any unit test related metrics, the focus should be that all business logic
is tested. While that may sound simple, it can be somewhat complicated because
many code bases have business logic spread out haphazardly. It is always a
good idea to make sure that business logic is encapsulated in one or two layers
of an API.

hello@levvel.io
980.278.3065 © 2018 LEVVEL.IO ALL RIGHTS RESERVED 5

Modular Project Structure

Choosing a proper project structure has a huge impact on the quality of unit
tests and the ease of which they can be written. While a project can be validly
structured in many different ways, below is a tried and true pattern that supports
unit testing:

Controller Layer

This is the first layer of the application and provides an entry point for all API
endpoints. It controls any sort of exception handling and routing with regards to
what should be returned. This layer should contain business logic, but only logic
as it pertains to what should be returned based on the result of the processing.

For example, if there is an API method to get a user based on an email address
and an email address is passed in that doesn’t exist in the database, a 204 HTTP
status code should be returned. Whatever the return value, this logic would be
done at the controller level.

Helper Layer

This layer sits below the controller layer, and each helper is injected into one or
more controllers. This layer contains all of the business logic of the application
with the exception of anything routing related (which is done in the controller
layer, as described above). This layer will be the primary focus of any unit testing
effort.

Data Access Layer

This layer abstracts away any database calls. No business logic should be done
in this layer; it is strictly a pass-through for the database. This implies that no unit
tests need to be written for any methods in this layer (unless it includes stored
procedure calls and one would like to ensure that the stored procedures are
called with the proper parameters).

This structure is great for simple APIs. It can also work well for larger and more
complicated APIs by tweaking the structure slightly. One such tweak is to add
a pseudo layer that sits parallel to the helper layer—a layer that is sometimes

hello@levvel.io
980.278.3065 © 2018 LEVVEL.IO ALL RIGHTS RESERVED 6

called the service layer. This layer can contain business logic that is not directly
related to a controller/helper/data layer directly, but is instead used by multiple
helpers. It supports reusability and makes testing much easier since it can be unit
tested independently.

Sample Unit Tests

Let’s look at a sample controller. This controller has a helper injected into it, and
the helper has a method called DoWork on it which takes in a string and returns
an instance of TestModel.

Note that all code samples here are written in C# and are using ASP.NET.
However, the principles still apply to any object-oriented language used to write
an API.

The following code samples are taken from my unit-test-example project on
GitHub. The repository can be cloned locally and the code referenced below can
be viewed, debugged, modified, etc.

 [RoutePrefix(“v1/example”)]
 public class TestController : ApiController
 {
 private readonly ITestHelper _testHelper;
 public TestController(ITestHelper testHelper)
 {
 _testHelper = testHelper;
 }

 public IHttpActionResult GetTest(string input)
 {
 try
 {
 TestModel result = _testHelper.DoWork(input);
 if (result == null)
 return Content(HttpStatusCode.NoContent,
 $”No content found for input: {input}”);

 return Ok(result);

 } catch (Exception ex)
 {
 return Content(HttpStatusCode.InternalServerError,
ex.Message);
 }
 }
 }

https://github.com/ianleeduckworth/unit-test-example
https://github.com/ianleeduckworth/unit-test-example

hello@levvel.io
980.278.3065 © 2018 LEVVEL.IO ALL RIGHTS RESERVED 7

If we were to run this through in a production-like environment, the first thing
that would happen is that the try/catch block is entered followed by TestHelper.
DoWork. However, in a unit-testing setup, this is not what is desired. The desire
would be to only test the controller method (TestController.GetTest). This can
be accomplished through a mocking framework. A mocking framework will
allow us to create a mocked version of a dependency and pass it in through the
constructor when the controller is created.

 [TestFixture]
 public class Tests
 {
 private TestController _testController;
 private Mock<ITestHelper> _testHelperMock;

 [SetUp]
 public void SetUp()
 {
 _testHelperMock = new Mock<ITestHelper>();
 _testController = new TestController(_testHelperMock.
Object);
 }
 }

Note that we are using Moq here to create a mocked version of TestController’s
only dependency, ITestHelper (other mocking frameworks for .NET include, but
are not limited to, NSubstitute and FakeItEasy). We are then passing the mocked
object into the constructor. Through Moq, we can manipulate the TestHelper.
DoWork method to do whatever we want, including what it returns and if it throws
an exception.

Also note that we are using NUnit here as our testing framework. Decorating the
SetUp method with the SetUp attribute ensures that the Setup method will be run
before each unit test. This means that any mocks that were set up in a previous
unit test will be destroyed. In other words, this pattern ensures that each test has
a clean slate.

Going through our TestController.GetTest(string input) method, it becomes
evident that there are three possible flows through that method, each of which is
driven by what happens in the TestHelper.DoWork(string input) method:

1.	 If the DoWork method throws an exception, a 500 should be returned with
the exception message text.

https://github.com/Moq/moq4/wiki/Quickstart
http://nsubstitute.github.io/
https://fakeiteasy.github.io/
https://nunit.org/
https://github.com/nunit/docs/wiki/SetUp-Attribute

hello@levvel.io
980.278.3065 © 2018 LEVVEL.IO ALL RIGHTS RESERVED 8

2.	 If the DoWork method returns null, a 204 (no content) should be returned.
3.	 If the DoWork method returns an instance of TestModel, a 200 should be

returned and the object returned from DoWork will be returned by GetTest.

This means that to test our business logic in this particular controller method, we
will actually need three unit test methods. First, let’s test what happens if DoWork
returns null. We can do this by using Moq to manipulate what the DoWork
method returns. We will now force it to return null:

 [TestFixture]
 public class Tests
 {
 private TestController _testController;
 private Mock<ITestHelper> _testHelperMock;

 [SetUp]
 public void SetUp()
 {
 _testHelperMock = new Mock<ITestHelper>();
 _testController = new TestController(_testHelperMock.
Object);
 }

 [Test]
 public void TestGet_Null()
 {
 const string input = “input”;

 //arrange
 _testHelperMock.Setup(x => x.DoWork(input)).
Returns(default(TestModel));

 //act
 var result = _testController.GetTest(input);

 //assert
 Assert.
IsInstanceOf<NegotiatedContentResult<string>>(result);
 var response = result as NegotiatedContentResult<string>;

 Assert.True(response.StatusCode == HttpStatusCode.
NoContent);
 Assert.True(response.Content == $”No content found for
input: {input}”);
 }
 }

hello@levvel.io
980.278.3065 © 2018 LEVVEL.IO ALL RIGHTS RESERVED 9

Every mocking framework has a slightly different syntax, but the idea is always
the same. In the “arrange” section of this test, we are telling the mocked object
that whenever anyone calls DoWork and passes in “input” to return null. When
TestHelper.DoWork is called (in the unit test) we will ensure that null is returned
by DoWork, and thus a 204 should be returned by TestController.GetTest in
our controller. If TestController.GetTest does not return a 204 with the proper
message, the unit test will fail.

Next, let’s go over what should happen if TestHelper.DoWork throws an
exception. In this case, according to our controller code, it should return a 500
and the exception text should be the content returned.

 [TestFixture]
 public class Tests
 {
 private TestController _testController;
 private Mock<ITestHelper> _testHelperMock;

 [SetUp]
 public void SetUp()
 {
 _testHelperMock = new Mock<ITestHelper>();
 _testController = new TestController(_testHelperMock.
Object);
 }

 [Test]
 public void TestGet_Null()
 {
 const string input = “input”;

 //arrange
 _testHelperMock.Setup(x => x.DoWork(input)).
Returns(default(TestModel));

 //act
 var result = _testController.GetTest(input);

 //assert
 Assert.
IsInstanceOf<NegotiatedContentResult<string>>(result);
 var response = result as NegotiatedContentResult<string>;

 Assert.True(response.StatusCode == HttpStatusCode.
NoContent);
 Assert.True(response.Content == $”No content found for
input: {input}”);
 }

hello@levvel.io
980.278.3065 © 2018 LEVVEL.IO ALL RIGHTS RESERVED 10

 [Test]
 public void TestGet_Exception()
 {
 const string input = “input”;
 const string exception = “exception”;

 //arrange
 _testHelperMock.Setup(x => x.DoWork(input)).Throws(new
Exception(exception));

 //act
 var result = _testController.GetTest(input);

 //assert
 Assert.
IsInstanceOf<NegotiatedContentResult<string>>(result);
 var response = result as NegotiatedContentResult<string>;

 Assert.True(response.StatusCode == HttpStatusCode.
InternalServerError);
 Assert.True(response.Content == exception);
 }
 }

The final thing that we need to do is check the happy path. What happens if
TestHelper.DoWork returns a valid instance of UserModel? If this occurs, no
exception is thrown and the instance of UserModel is not null, thus a 200 is
returned with the instance of UserModel as the object’s content.

 [TestFixture]
 public class Tests
 {
 private TestController _testController;
 private Mock<ITestHelper> _testHelperMock;

 [SetUp]
 public void SetUp()
 {
 _testHelperMock = new Mock<ITestHelper>();
 _testController = new TestController(_testHelperMock.
Object);
 }

 [Test]
 public void TestGet_Null()
 {
 const string input = “input”;

 //arrange

hello@levvel.io
980.278.3065 © 2018 LEVVEL.IO ALL RIGHTS RESERVED 11

 _testHelperMock.Setup(x => x.DoWork(input)).
Returns(default(TestModel));

 //act
 var result = _testController.GetTest(input);

 //assert
 Assert.
IsInstanceOf<NegotiatedContentResult<string>>(result);
 var response = result as NegotiatedContentResult<string>;

 Assert.True(response.StatusCode == HttpStatusCode.
NoContent);
 Assert.True(response.Content == $”No content found for
input: {input}”);
 }

 [Test]
 public void TestGet_Exception()
 {
 const string input = “input”;
 const string exception = “exception”;

 //arrange
 _testHelperMock.Setup(x => x.DoWork(input)).Throws(new
Exception(exception));

 //act
 var result = _testController.GetTest(input);

 //assert
 Assert.
IsInstanceOf<NegotiatedContentResult<string>>(result);
 var response = result as NegotiatedContentResult<string>;

 Assert.True(response.StatusCode == HttpStatusCode.
InternalServerError);
 Assert.True(response.Content == exception);
 }

 [Test]
 public void TestGet_Ok()
 {
 const string input = “input”;

 //arrange
 _testHelperMock.Setup(x => x.DoWork(input)).Returns(new
TestModel());

 //act
 var result = _testController.GetTest(input);

 //assert

hello@levvel.io
980.278.3065 © 2018 LEVVEL.IO ALL RIGHTS RESERVED 12

Those three unit tests now cover every flow through the TestController.GetTest
method, thus all business logic contained in that controller is tested and all
dependencies are mocked out. This ensures that the unit tests will never fail
because of an issue outside of the scope of the method under test. However,
the unit tests will fail if someone, for example, modifies the controller to start
returning a 404 instead of a 204 when TestHelper.DoWork returns null. This is
good because an external dependency is probably depending on the 204 being
returned, so that change should cause the unit test to fail.

Even better is the fact that immediate feedback is given to the developer that
the change is causing an error. This allows the developer to fix the problem
immediately without having to go through any functional or end-to-end testing
cycles (or worse, fix a production bug). This is why setting your code base up
to follow both the composition over inheritance and the single responsibility
principles is so important. If the responsibilities get muddled, the ability to test
a single “unit” of work within the code base becomes difficult, if not outright
impossible.

Challenges

The main challenge in creating a highly functioning unit test suite is not the
writing of the tests themselves, but getting your code base into a state where
it can be unit tested. This can be especially challenging since the applications
with the largest need for unit tests are oftentimes older applications where the
principles and patterns mentioned above have not been followed properly (if at
all). Selling the idea of a large refactor to an organization can be a daunting task.

However, it is worth it in the long run because while a refactor of this nature
will certainly cause some pain in the short term, it will allow for changes to the
application to be made significantly more quickly and in a less error-prone
fashion in the long term.

A real enterprise application that Levvel developed for a client had 190 fully-
mocked unit tests. This provided full coverage for all business logic in the API

 Assert.
IsInstanceOf<OkNegotiatedContentResult<TestModel>>(result);
 }
 }

hello@levvel.io
980.278.3065 © 2018 LEVVEL.IO ALL RIGHTS RESERVED 13

(including controllers and helpers as well as extension methods and other
miscellaneous functionality), and they took between 2.5 and 3 seconds to run.
Because the unit test suite was so fast and so inclusive, it meant that developers
could get features done faster with little to no fear that their changes were
breaking other business logic (as long as all unit tests were in a passing state).
This had the effect of significantly reducing QA cycle times since bugs became
a rarity. The end state for this particular application was that code got out to
production faster than for other applications in the organization and production
defects were very uncommon.

This effectively-instantaneous feedback regarding if a change broke any
business logic in any other part of an application is indispensable to any
organization regardless of size or type of business. I have personally never seen
a client displeased with the long-term results when a proper unit test suite is
implemented.

In order to sell the idea of a unit test centric refactor, it is necessary to show the
organization the many benefits that will be seen in the medium to long term while
highlighting the comparatively short amount of time it takes to set them up. The
unit testing itself can present some challenges of its own, particularly regarding
how exactly to test one unit of code. This document previously mentioned the
use of a mocking framework; using a mocking framework is absolutely essential
to having a highly-functioning unit test suite. At no time should the unit tests
ever access a database, call an external dependency, or do anything outside
the scope of the method itself. To have a unit test do so violates the entire idea
of unit testing (while simultaneously making your tests flaky and/or long-running
in the case that an external dependency which you have no control over is not
functioning properly).

This is not to say that testing external dependencies is bad or unnecessary (in
fact, to ensure a successful release, these things absolutely have to be tested),
but instead that the unit test suite is the wrong venue to test such things.

Testing dependencies is part of integration testing and testing the data access
layer is part of functional testing (as well as integration testing). If anyone says
that unit testing is a bad practice because the tests take too long to run or are
flaky, it is almost certain that the person saying these things has never been
exposed to properly created unit tests. If someone claims that unit testing is
flawed because it doesn’t cover integration or functional testing, that person

hello@levvel.io
980.278.3065 © 2018 LEVVEL.IO ALL RIGHTS RESERVED 14

almost certainly is misunderstanding what unit testing is for.

Unit testing is best used for immediate feedback for a developer so the
developer can see what effect their code change had on the application. This
should greatly ease the burden on a QA team. However, a good unit test suite is
never a replacement for functional and integration testing.

Getting Buy-in from Management

This idealized state certainly sounds nice, and while it is absolutely attainable,
it may take a marked culture shift at an organization to truly make it a reality.
It demands that all developers follow a series of patterns that they may not
know or understand at the current time; this requires training and explanation.
Additionally, it may require refactors of fragile code bases that are left relatively
exposed. This all creates a difficult sell to management since many people who
are involved in the ultimate decision will only see the upfront cost without much
consideration to the cost savings and revenue generation (via getting business
features out the door much faster and much more accurately). This is where
selling the idea to management becomes very important.

One well-used and tested technique is to bide one’s time until the organization
decides they want to create a new code base. That code base can then
become a pilot for this new way of thinking. A set of strong developers who
can implement the appropriate principles and write the appropriate unit tests
as the application is being developed should be selected. As time passes, the
immediate team should notice that, as the business requirements are inevitably
tweaked and modified, the team is very agile in their ability to respond without
introducing unintended consequences.

This, hopefully, will build up some goodwill with management which can be
parlayed into a larger conversation about the state of the other applications
which are not so agile. The pilot application can then be used as a baseline for
gathering real and hard data about performance, both regarding how easy it is
to test and in how good the team’s throughput is (this data can be aggregated
through your tracking software; JIRA, Rally, etc.). Finally, this hard data can be
used to show that:

1.	 The idea of a highly-functional unit test suite is not just an unattainable ideal,
but one that, with the right people and the right guidance, can easily become

hello@levvel.io
980.278.3065 © 2018 LEVVEL.IO ALL RIGHTS RESERVED 15

a reality.
2.	 The long-term benefit of a refactor and a unit-test writing effort far outweighs

the initial investment.
3.	 The right people already exist within the organization who can spearhead

such an effort.

Conclusion

While the idea of unit testing has been around for years, it is always surprising
how few organizations effectively leverage the power of unit tests. If the desire is
to influence an organization to create a culture of unit testing, make sure to learn
and implement the principles discussed in this document first. Develop a rapport
with management before such an idea is pitched, and remember that someone
in the business is generally going to want to hear things in terms of dollars and
cents. Anyone’s best bet for influencing a culture change of this nature is to get
the business on board and to sell it as a beneficial and necessary long-term
investment. The ultimate payoff is both lowered cost of the testing effort and
significantly improved time to market for business ideas and requirements.

About Levvel

Levvel helps clients transform their business with strategic consulting and
technical execution services. We work with your IT organization, product groups,
and innovation teams to design and deliver on your technical priorities.

Our App Dev team is made up of technology agnostic enthusiasts with a wide
array of knowledge in popular modern and legacy languages such as Java, .NET,
Ruby on Rails, Node.js & JavaScript, Python, and PHP.

We firmly believe that mentoring can be integrated with delivery. Our main
focus is on saving our partners as much as possible on the lifetime-total-cost of
ownership and maintainability of their systems. For more information, contact us
at hello@levvel.io.

